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Abstract

Background: Distinguishing well-differentiated hepatocellular carci-
noma (WD-HCC), hepatocellular adenoma (HA) and non-neoplastic 
liver tissue (NNLT) solely on morphology is often challenging. The 
purpose of this study was to evaluate the use of computational image 
analysis to distinguish WD-HCC, HA and NNLT.

Methods: Seventy-seven cases comprising of WD-HCC (n = 26), HA 
(n = 23) and NNLT (n = 28) were retrieved and reviewed. A total of 
485 hematoxylin and eosin (H&E) photomicrographs (× 400, 0.09 
µm2) of WD-HCC (n = 183), HA (n = 173), NNLT (n = 129) and 
nine whole-slide scans (three of each diagnosis) were obtained, color 
deconvoluted and digitally transformed. Quantitative data including 
nuclear density, nuclear sphericity, nuclear perimeter, and nuclear ec-
centricity from each image were acquired. The data were analyzed 
by one-way analysis of variance (ANOVA) with Tukey post hoc test, 
followed by unsupervised and supervised (Chi-square automatic in-
teraction detection (CHAID)) cluster analysis.

Results: Unsupervised cluster analysis identified three well defined 
clusters of WD-HCC, HA and NNLT. Employing the four most dis-
criminating nuclear features, supervised analysis was performed on 
a training set of 383 images, and validated on the remaining 102 test 
images. The analysis identified WD-HCC (sensitivity 100%, specific-
ity 98%), HA (sensitivity 71%, specificity 85%) and NNLT (sensitiv-
ity 70%, specificity 86%). An analysis of whole-slide images identi-
fied WD-HCC with sensitivity and specificity of 100%.

Conclusions: We have successfully demonstrated that computational 
image analysis of nuclear features can differentiate WD-HCC from 
non-malignant liver with high accuracy, and can be used to assist in 
the histopathological diagnosis of hepatocellular carcinoma.
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Introduction

Because of their morphologic similarities, histopathologic 
differentiation of well-differentiated hepatocellular carcino-
ma (WD-HCC), hepatocellular adenoma (HA), and adjacent 
normal liver can be challenging especially in core needle bi-
opsy specimens [1]. The classic morphology of hepatocel-
lular carcinoma (HCC) is described as more than two layers 
of cells in the hepatic plate [2], however, assessment of the 
hepatic plate thickness is often difficult, and immunohisto-
chemical (cluster of differentiation (CD)34, glypican-3) and 
special stains (reticulin) are employed in diagnosis [1]. Other 
morphologic features that favor a diagnosis of HCC include 
cytological atypia, nuclear pleomorphism, pseudoglandular/
acinar architecture, high nuclear/cytoplasmic ratio (N/C ra-
tio), increased mitotic activity, and vascular invasion. These 
features may or may not be present in WD-HCC, with focal 
pseudoglandular/acinar architecture and cytological atypia 
occasionally seen in HA.

HA is composed of proliferating hepatocytes arranged in 
hepatic plates of one to two cells and intact reticulin frame-
work with minimal departure from normal liver architecture. 
Absence of portal tracts and presence of interspersed dilated 
venous channels and unpaired arterioles help distinguish HA 
from adjacent normal liver, however, these features may not 
always be discernible. Differentiation of HA from WD-HCC 
may also be difficult due to compression of sinusoids in HA 
and loss of portal tracts in both tumors [3]. These distinc-
tions can be especially challenging in atypical clinical set-
tings, such as pediatric patients or young females taking oral 
contraceptives, where HCC is more likely to resemble HA [4, 
5]. Moreover, the β-catenin-activated subtype of HA shows 
frequent cytoarchitectural abnormalities, such as small cell 
change, pseudoacinar formation, and nuclear atypia, and is 
frequently associated with concurrent or subsequent HCC 
[6].

Computer-assisted image analysis can provide quantita-
tive assessment of nuclear features that are difficult to meas-
ure by the human eye; these features include nuclear density, 
contour, area, perimeter, sphericity, eccentricity, and chroma-
tin concentration [7-9]. A recent study has shown the poten-
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tial diagnostic significance of using architectural and nuclear 
features in classifying HCC images in both surgically-resected 
and biopsy specimens. It suggested a prototype classification 
for HCC that was based on morphological features (nuclear 
and structural atypia) measured in whole slide images [10]. 
Attempts have been made to distinguish primary HCC from 
metastatic carcinomas and non-neoplastic liver tissue (NNLT) 
based on fractal dimension of morphometric elements inte-
grated into an artificial neural network [11]. Another algorithm 
evaluated trabeculae segments from liver images by extracting 
the sinusoids and stromal area for the diagnosis of HCC [12]. 
However, none of these approaches has been used to quan-
tify the histological features of WD-HCC, one of the most 
diagnostically challenging liver tumors, or to compare these 
features with those of benign liver neoplasms that morpho-
logically mimic WD-HCC. Computational image analysis will 
enhance objectivity and accuracy in the diagnosis of liver tu-
mors. Patients will benefit from definitive distinction between 
WD-HCC and HA as it influences treatment decisions [13-15].

In this study, we measured nuclear parameters including 
density, perimeter, sphericity, eccentricity, fill rate, convex pe-
rimeter, convex volume, and area to differentiate WD-HCC, 
HA, and NNLT by image and computational analysis. The pa-
rameters that were most useful in differentiating these entities 
were nuclear density, nuclear perimeter, nuclear sphericity and 
nuclear eccentricity. The latter parameters were subjected to 
unsupervised and supervised cluster analysis through hierar-
chical and k-means cluster analyses, and Chi-square automatic 
interaction detection analysis, respectively. The resultant algo-
rithm was used to analyze both test images and whole slide 
images.

Materials and Methods

Case selection and image acquisition

Seventy-seven liver tissue samples derived from biopsies, sur-
gical resections and autopsies were selected (Fig. 1). These 
included 28 NNLT specimens (12 biopsies; three autopsies; 
13 surgical resections); 23 HA specimens (two biopsies; 21 
surgical resections); 26 WD-HCC specimens (13 biopsies; 13 
surgical resections). The NNLT specimens were determined 
to be normal liver tissue devoid of inflammation or fibrosis. 
The HA specimens included inflammatory (n = 9), HNF-1 
alpha mutated (n = 8), β-catenin mutated (n = 2), and un-
classified (n = 4) subtypes. WD-HCC specimens were mor-
phologically uniform and devoid of variant features. All the 
adenomas were considered as one category for the analysis. 
Diagnosis was reviewed and confirmed by three pathologists, 
and their consensus interpretation was considered the correct 
diagnosis for comparison with the results of computational 
image analysis.

A total of 485 images of hematoxylin and eosin (H&E) 
stained sections of NNLT (n = 129), HA (n = 173) and WD-
HCC (n = 183) were obtained under high power (× 400, 0.09 
µm2) using an Olympus DP72® camera. Fields with portal 
triads, artifacts, marked fibrosis, inflammatory foci, necrosis, 

and sinusoidal dilatation were excluded from image acquisi-
tion. Whole slide scans of nine liver samples (three HA; three 
NNLT; three WD-HCC) were acquired using Mikroscan SL5 
system and saved as BMP files. The regions of interest (ROIs) 
were annotated using QuPath software (Version: 0.1.2), ex-
cluding portal triads and areas of fibrosis (Fig. 2) [9, 16].

All images were anonymized and use of patient samples 
complied with guidelines of institutional review board (IRB: 
1059689-1).

Image processing and analysis

Based on the source code of ImageJ (1.52g, Java 1.8.0_66, Ver. 
2.0.0), color deconvolution was applied to digital images to 
extract the hematoxylin blue, eosin pink, and residual color 
channels. Images of the hematoxylin blue channel underwent 
color-to-grayscale (luminance) conversion, noise reduction, 
Otsu thresholding, and morphological opening (Figs. 1, 3). 
These images were then processed for connected component 
analysis by the ICY bioimage platform (http://icy.bioimag-
eanalysis.org) to measure nuclear parameters. The directly 
measured nuclear parameters included nuclear density, nuclear 
perimeter, nuclear sphericity, nuclear eccentricity, nuclear fill 
rate, nuclear convex perimeter, nuclear convex volume, and 
nuclear area (Fig. 1) [7, 17, 18]. The calculated parameters 
were: medians and standard deviations (SDs) of nuclear pe-
rimeter, nuclear sphericity, nuclear eccentricity, nuclear fill 
rate, nuclear convex perimeter, nuclear convex volume, and 
nuclear area. For each whole slide image, the tumor and nor-
mal areas were annotated, and tiles (with area size equaling 
that of acquired high power images) were extracted from the 
annotated areas.

Definitions of measured and calculated nuclear param-
eters

Nuclear density: the number of nuclei in 0.09 µm2 area; nucle-
ar perimeter: the circumference of the nucleus; nuclear sphe-
ricity: the measurement of how closely the shape of a nucleus 
approaches a mathematically perfect sphere; nuclear eccentric-
ity: the measurement of the deviation of the shape of a nucleus 
from a mathematically perfect sphere.

Statistical analysis

The statistical analysis in this study was performed in three 
steps. First, a one-way analysis of variance (ANOVA) with 
Tukey post hoc test was performed to test for the statistical sig-
nificance of each quantified nuclear feature amongst the three 
groups (NNLT, HA, and WD-HCC). Second, unsupervised 
clustering of images based on the measured nuclear features 
was performed to determine whether the images naturally clus-
ter into these three groups. A two-step unsupervised clustering 
approach was used: hierarchical followed by k-means cluster-
ing. For hierarchical clustering, Ward’s method was employed 
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which merged pairs of clusters at each step by minimizing the 
total within-cluster variance and generated a dendrogram for 
estimation of the number of likely clusters within the studied 
population (Fig. 4) [19]. The estimates of hierarchical cluster-
ing were used to develop centroids for the k-means cluster-
ing. The resulting clusters were evaluated to determine their 
composition and correspondence to the original designation 
(pathological diagnosis) of the images within those groups [7]. 
Third, supervised cluster analysis (a predictive model) was de-
signed, trained and validated on sets of photomicrographs and 
whole slide scans.

The supervised cluster analysis used a randomly selected 
set comprising 383 (80%) of the total 485 images (99 NNLT, 
135 HA, and 149 WD-HCC) for training, and the remaining 

102 (20%) images (38 images for HA, 30 for NNLT, and 34 
for WD-HCC) to validate the algorithm. Each of the 485 im-
ages was considered individually for analysis even when they 
were derived from different areas of the same case. Data from 
training images were subjected to Chi-square automatic inter-
action detection (CHAID) to build a decision tree model. This 
model combined all input variables with significant differenc-
es, namely: nuclear density, median nuclear perimeter, median 
nuclear sphericity, and SD nuclear eccentricity in each image 
(P < 0.05, one-way ANOVA). CHAID adopted the group-to-
the-end strategy when choosing the optimal grouping factor. 
Decision tree model was used on test images and whole slide 
scans to validate the CHAID algorithm. The sensitivity and 
specificity of the model were evaluated by binary classification 

Figure 1. Illustration of work flow and methods for research.
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analysis (Fig. 1) [17, 20-23].
Statistical analyses were performed using SPSS (v.22.0).

Results

Quantification of nuclear morphometric features to differ-
entiate HA, NNLT and WD-HCC

All photomicrographs were processed through deconvolution, 
noise reduction, Otsu thresholding, and morphologic opening 
(Fig. 1). The nuclear density, median nuclear perimeter, me-
dian nuclear sphericity and SD nuclear eccentricity of each im-
age were quantified based on the source code of ImageJ.

A one-way ANOVA was conducted to compare nuclear den-
sity, median nuclear perimeter, median sphericity and SD nuclear 
eccentricity for the three diagnostic groups. Nuclear density was 
significantly different between the diagnostic groups: NNLT, HA 
and WD-HCC (mean ± SD: 227.2 ± 48.9; 230.1 ± 65.6; 421.5 
± 80.3; respectively; one-way ANOVA, F (2, 488) = 464.4, P < 
0.001). Post hoc comparisons indicated the mean nuclear density 
in WD-HCC was significantly different from those in NNLT and 
HA (Tukey post hoc test, P < 0.05) (Table 1, Fig. 4a).

Median nuclear perimeter was significantly different be-
tween the three diagnostic groups: NNLT, HA and WD-HCC 
(mean ± SD: 104.4 ± 16.9; 96.6 ± 16.0; 122.9 ± 17.7; respec-
tively; one-way ANOVA, F (2, 488) = 114.3, P < 0.001). Post 
hoc comparisons indicated the median nuclear perimeter in 
WD-HCC was significantly different as compared to those in 
NNLT and HA. Median nuclear perimeter was also significant-

Figure 3. Representative photomicrographs of non-neoplastic liver tissue (NNLT), hepatocellular adenoma (HA), inflammatory 
type hepatocellular adenoma (HA-I), and well-differentiated hepatocellular carcinoma (WD-HCC) in sequential order: hematoxy-
lin and eosin (H&E), and digitally transformed to hematoxylin blue, luminance, and morphological opening (× 400).

Figure 2. Representative whole slide scan of resected liver tissue 
showing region of interest selected for analysis demarcated in yellow. 
Note that it excludes portal tracts.
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ly different between NNLT and HA (Tukey post hoc test, P < 
0.05) (Table 1, Fig. 4b).

Median nuclear sphericity was significantly different be-
tween the three diagnostic groups: NNLT, HA and WD-HCC 
(mean ± SD: 0.975 ± 0.189; 0.979 ± 0.019; 0.924 ± 0.060; 
respectively; one-way ANOVA, F (2, 488) = 103.1, P < 0.001). 
Post hoc comparisons indicated the median nuclear sphericity 
in WD-HCC was significantly different from those in NNLT 
and HA (Tukey post hoc test, P < 0.05) (Table 1, Fig. 4c).

SD nuclear eccentricity was significantly different be-
tween the three diagnostic groups: NNLT, HA and WD-HCC 
(mean ± SD: 0.428 ± 0.092; 0.395 ± 0.053; 0.536 ± 0.092; 
respectively; one-way ANOVA, F (2, 488) = 148.0, P < 0.001). 
Post hoc comparisons indicated the SD nuclear eccentricity in 
WD-HCC was significantly different from those in NNLT and 
HA. Also, SD nuclear eccentricity was significantly different 

between NNLT and HA (Tukey post hoc test, P < 0.05) (Table 
1, Fig. 4d).

Other nuclear parameters investigated in this study (me-
dian eccentricity, median fill rate, median convex perimeter, 
median convex volume, SD perimeter, SD area, SD sphericity, 
SD fill ratio, SD convex perimeter, and convex volume) did 
not demonstrate significant differences between the three diag-
nostic groups (data not shown).

Unsupervised classification of the quantified nuclear fea-
tures

Unsupervised hierarchical clustering analysis was applied 
to the four statistically significant variables (nuclear density, 
median nuclear perimeter, median nuclear sphericity, and SD 

Figure 4. Distribution of nuclear density (a), median nuclear perimeter (b), median nuclear sphericity (c), and standard deviation 
(SD) nuclear eccentricity (d) of non-neoplastic liver tissue (NNLT) (n = 129), well-differentiated hepatocellular carcinoma (WD-
HCC) (n = 183), and hepatocellular adenoma (HA) (n = 173) (P < 0.001; one-way analysis of variance (ANOVA)). Bars indicate 
5th and 95th percentiles; boxes represent the 25th and 75th percentiles; lines inside the boxes are medians. Asterisks (*) indicate 
significant (P < 0.05) differences by Tukey post hoc test.

Table 1.  Summary of Means of Quantified Nuclear Features

Nuclear density 227.25 ± 48.88 230.13 ± 65.58 421.48 ± 80.32 F(2, 488) = 464.4, P < 0.001 WD-HCC vs. NNLT
WD-HCC vs. HA

Median nuclear perimeter 104.45 ± 16.93 96.61 ± 16.03 122.94 ± 17.72 F(2, 488) = 114.3, P < 0.001 WD-HCC vs. NNLT
WD-HCC vs. HA
NNLT vs. HA

Median nuclear sphericity 0.98 ± 0.19 0.98 ± 0.19 0.92 ± 0.06 F(2, 488) = 103.1, P < 0.001 WD-HCC vs. NNLT
WD-HCC vs. HA

SD nuclear eccentricity 0.43 ± 0.09 0.39 ± 0.05 0.54 ± 0.09 F(2, 488) = 148.0, P < 0.001 WD-HCC vs. NNLT
WD-HCC vs. HA
NNLT vs. HA

HA: hepatocellular adenoma; NNLT: non-neoplastic liver tissue; SD: standard deviation; WD-HCC: well-differentiated hepatocellular carcinoma.
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nuclear eccentricity) using the Ward’s method. This produced 
a dendrogram with an estimation of three well-defined cluster 
groups of cases (Fig. 5a). Using the estimation of three classes 
in hierarchical clustering, the total data were subjected to a k-
means cluster analysis (k = 3) (Fig. 5b, c). All images were clas-
sified into three clusters after nine iterations. Distance between 
clusters 1 and 2 (93.60) was less than the distance between 
clusters 2 and 3 (178.37) (Fig. 5b). Cluster 1 entirely consisted 
of benign livers (51 NNLT and 79 HA). Cluster 2 consisted of 
mixture of all three groups with majority of benign livers (78 
NNLT, 91 HA, 32 WD-HCC). Cluster 3 consisted of mainly 
WD-HCC (three HA and 151 WD-HCC) (Fig. 5c).

Supervised classification of the quantified nuclear features

Using the variables of nuclear density, median perimeter, me-
dian sphericity and SD eccentricity of each image, the CHAID 
algorithm generated six ramifications from root node, through 
decision nodes, and terminated with 15 terminal nodes. The 
first step in the decision tree generation utilized nuclear density 
followed by the remaining three variables, to predict a diagno-
sis of NNLT, HA and WD-HCC.

Nuclear density (D)

1) D ≥ 377

Images with nuclear density ≥ 377 were classified as WD-
HCC (node 6; purity 99.1%), and this proved to be the most 
powerful predictor for the differentiation of WD-HCC from 
HA and NNLT (Fig. 6).

2) D ∊ [298 - 377)

Nuclear density between 377 and 298 indicated WD-HCC or 
HA (node 5), and this population was subclassified on the ba-
sis of median perimeter with the diagnosis of WD-HCC if the 
median perimeter was ≥ 117.5 (node 19; purity 100%), and 
HA if the median perimeter was < 117.5 (node 18; purity 75%) 
(Fig. 6).

3) D ∊ [253 - 298)

When nuclear density was between 253 and 298 (node 4), digi-
tal images were subclassified on the basis of median spheric-
ity into HA, NNLT or WD-HCC. If the median sphericity was 
≥ 0.97, the images were categorized as HA (node 16; purity 
100%; node 17; purity 60%). If the median sphericity was be-
tween 0.91 and 0.97, the images were categorized as NNLT 
(node 15; purity 64.3%), and if the median sphericity was < 
0.91, the images were categorized as WD-HCC (node 14; pu-
rity 92.3%) (Fig. 6).

4) D ∊ [201 - 253)

When nuclear density was < 253, the images were considered 
as non-malignant lesion (HA or NNLT). The images with nu-
clear density between 201 and 253 were evaluated with medi-
an nuclear perimeter (node 3). If the median nuclear perimeter 
was ≥ 104.3, the images were grouped as HA (node 11; purity 
94.4%). If the median nuclear perimeter was between 90.9 and 
104.3, the images were grouped as NNLT (node 12; purity 
88.2%). If the median nuclear perimeter was < 90.9, then the 

Figure 5. Unsupervised clustering. (a) Dendrogram developed with hierarchical clustering analysis. Dissimilarity is decided with 
euclidean distance. (b) Distances between the final cluster centers developed with k-means clustering analysis. (c) Composition 
of each cluster developed via k-means clustering analysis.
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median sphericity was evaluated, images with median spheric-
ity of < 0.98 were classified as NNLT (node 21; purity 86.7%), 
and images with median sphericity ≥ 0.98 were classified as 
HA (node 20; purity 86.7%) (Fig. 6).

5) D ∊ [168 - 201)

Images with nuclear density between 168 and 201 were evaluat-
ed with median nuclear perimeter (node 2). These images were 
grouped as HA if the median nuclear perimeter was < 109.4 

(node 9; purity 100%), and grouped as NNLT if the median nu-
clear perimeter was ≥ 109.4 (node 10; purity 72.7%) (Fig. 6).

6) D < 168

When the nuclear density was < 168 (node 1), SD nuclear ec-
centricity was evaluated. Images with SD nuclear eccentricity 
< 0.44 were classified as NNLT (node 7; purity 85.7%), and 
images with SD nuclear eccentricity ≥ 0.44 were classified as 
HA (node 8; purity 81.0%) (Fig. 6).

Figure 6. Decision tree from Chi-square automatic interaction detection (CHAID) analysis. Columns left to right: root nodes; de-
cision nodes; terminal nodes. Shades of red from dark to light indicate well-differentiated hepatocellular carcinoma (WD-HCC), 
hepatocellular adenoma (HA), and non-neoplastic liver tissue (NNLT), respectively. Purity of each diagnosis is given in terminal 
nodes. D: nuclear density; E: standard deviation (SD) nuclear eccentricity; P: median nuclear perimeter; S: median nuclear sphe-
ricity. ∊: a set (number 1, number 2); ): number included in analysis; [: number excluded from analysis.
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Validation of the decision tree algorithm

The decision tree algorithm, developed by CHAID, was vali-
dated through binary classification analysis on a set of 102 test 
images (30 NNLT, 38 HA, 34 WD-HCC). The algorithm de-
tected WD-HCC with 100% sensitivity and 98.53% specificity, 
HA with 71.05% sensitivity and 85.94% specificity, and NNLT 
with 70.00% sensitivity and 86.11% specificity (Table 2).

Whole slide scans (three NNLT, three HA, three WD-
HCC) were also used to validate the decision tree algorithm. 
The three WD-HCC were all detected with 100% sensitivity 
and 100% specificity. While the three NNLT were interpreted 
correctly, the three HA were misinterpreted by the decision 
tree algorithm as NNLT (Table 2).

Discussion

Differentiation of hepatocellular carcinoma, adenoma, and 
normal liver parenchyma based on histopathologic features 
alone is sometimes challenging, especially in core needle bi-
opsies. Additional workup, involving use of special and im-
munochemical stains is often required, resulting in increased 
costs and delays [24, 25]. Computational methods present 
alternative means for improved diagnostic accuracy without 
increasing cost or turnaround time. For this study we designed 
and validated a computerized algorithm using nuclear morpho-
metric features to differentiate NNLT, HA and WD-HCC.

Of the many nuclear features that we evaluated, four re-
liably features to differentiate NNLT, HA and WD-HCC are 
nuclear density, median nuclear sphericity, median nuclear pe-
rimeter, and SD nuclear eccentricity. Unsupervised hierarchi-
cal clustering followed by k-means cluster analysis of these 
four quantified nuclear features identified three well-defined 
cluster groups. Cluster 1 consisted entirely of benign condi-
tions (51 NNLT, 79 HA), cluster 3 consisted mainly of WD-
HCC (three HA, 151 WD-HCC), and cluster 2 consisted of a 
mixture of all three diagnostic categories (78 NNLT, 91 HA, 
32 WD-HCC) (Fig. 4). The mixture of diagnostic categories 

in cluster 2 affirms our initial contention that some diagnoses 
are challenging by histopathology and morphometry, requiring 
supervised cluster analysis.

Supervised cluster analysis used nuclear density, median 
nuclear sphericity, median nuclear perimeter, and SD nuclear 
eccentricity to create a decision tree algorithm that correctly 
identified WD-HCC with a sensitivity of 100% and a specific-
ity of 98.53%. Analysis of these nuclear features in whole slide 
scans yielded similar results distinguishing WD-HCC from 
HA and NNLT with 100% sensitivity and specificity.

The algorithm-based differentiation between HA and NNLT 
was less optimal. This may be explained in part by the meth-
odological exclusion of portal triads during image acquisition, 
because of major distinguishing features of HA being absence of 
portal triads and presence of unpaired blood vessels. Thus, ex-
clusion of architectural features in computational analysis ren-
ders nuclear features inadequate to distinguish HA and NNLT.

Three of 173 HA images were misclassified as WD-HCC 
by our computerized algorithm. All three were HA of the in-
flammatory subtype, which characteristically shows telangi-
ectasia (sinusoidal dilatation), intensive inflammatory infiltra-
tion, and occasionally steatosis. The discrepancy may be due 
to infiltrated inflammatory cells in the liver parenchyma inter-
fering with measurement of the nuclear density of the hepato-
cytes. Such outcomes necessitate review of computational 
analysis by experienced diagnosticians to exclude discrepan-
cies caused by artifacts or unusual morphological features.

Whole slide scans were tested by the binary classification 
analysis for validation of the decision tree algorithm which 
identified WD-HCC with 100% sensitivity and specificity. 
However, on whole slide scans the model classified both NNLT 
and HA as NNLT. Broadly, the model differentiated benign 
from malignant but not benign (HA) from normal (NNLT). 
We speculate that as only nuclear morphometric features were 
used in the algorithm that excluded architectural features (por-
tal triads), the algorithm failed to differentiate benign from 
normal. Additionally, absence of a well demarcated histologi-
cal boundary between NNLT and HA may render morphomet-
ric analysis models impractical for their differentiation. Thus, 
the nuclear morphometric model is best utilized in differentiat-

Table 2.  List of Sensitivities and Specificities of the CHAID Analysis for Detection of WD-HCC, HA, and NNLT on the Training, Test 
Data, and Whole Slide Images

HA NNLT WD-HCC Sensitivity Specificity
Training HA (135) 111 22 2 82% 93%

NNLT (99) 15 84 0 85% 92%
WD-HCC (149) 2 1 146 98% 99%

Test HA (38) 27 10 1 71% 86%
NNLT (30) 9 21 0 70% 86%
WD-HCC (34) 0 0 34 100% 99%

Whole slide scans HA (3) 0 3 0 0% 100%a

NNLT (3) 0 3 0 100% 50%a

WD-HCC (3) 0 0 3 100% 100%

aThe algorithm classified all three HA as NNLT in whole slide scans. CHAID: Chi-square automatic interaction detection; HA: hepatocellular adenoma; 
NNLT: non-neoplastic liver tissue; SD: standard deviation; WD-HCC: well-differentiated hepatocellular carcinoma.
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ing benign from malignant hepatic neoplasms.
Recent studies involving use of image analysis have aimed 

to either automate the diagnostic process or aid the patholo-
gist in diagnosis of disease. Most of these studies are aimed 
at applying artificial intelligence and neural networks to im-
age analysis [26]. The caveat with a neural network-based ap-
proach, however, is the so called “black box” phenomenon; it 
is difficult to determine the decision-making process in neural 
networks and there are concerns about reproducibility. In this 
study we preferred a “white box” approach to clearly delineate 
the inner working and decision-making process of our algo-
rithm. Thus, we followed a CHAID-based analysis of the ex-
tracted nuclear features rather than a convolutional neural net-
work classification at image level (without feature extraction). 
CHAID algorithm has recently been recognized as a useful tool 
to stratify variables in clinical research. For example, CHAID 
analysis of radiologic lesion descriptors from magnetic reso-
nance imaging was able to differentiate between intrahepatic 
cholangiocarcinoma and HCC in cirrhotic livers [23]. Also, 
using demographic and clinical features it was useful in pre-
dicting prognostic features of squamous cell carcinomas of the 
head and neck [21]. We believe that the CHAID-based com-
putational analysis will continue to find useful applications in 
pathology especially because its “white box” approach allows 
for reproducibility of our algorithm by other investigators.

Differentiation of hepatic neoplasms is challenging both 
for the human eye and a computerized algorithm. As observed 
in the decision tree algorithm, for some cases, the definitive di-
agnosis could only be made after evaluating multiple morpho-
metric features. Similarly, diagnosticians consider a variety of 
cellular and architectural characteristics before reaching a diag-
nosis. Therefore, an ideal algorithm should incorporate nuclear, 
cellular, and architectural features especially in cases with con-
founding features. Such technologies are best used for screen-
ing purposes with review and confirmation by expert diagnosti-
cians, and are expected to bring accuracy and objectivity.

This study has shown promise in the use of computational 
and statistical analysis for diagnosis of the hepatic neoplasms. 
However, it has limitations that include a smaller sample size 
for adenoma subtypes and few whole slide scans. Further stud-
ies with a larger representation of hepatic neoplasms and use of 
greater number of photomicrographs and whole slide scans are 
expected to provide a more accurate analysis. We used non-
neoplastic liver from autopsied and surgical specimens; these 
morphologically normal appearing liver samples, although 
representative, are not substitute for normal liver.

Our approach offers additional advantages over traditional 
diagnostic workup involving histopathological examination 
supplemented with immunohistochemistry and special stain-
ing. This computational image analysis provides reliable diag-
nosis on a limited tissue sample, which is often the case with 
needle biopsies, as it requires only a single high-power quality 
image. The images can be analyzed remotely, saving cost of 
ancillary testing and reducing turnaround time.

Statement of significance

Hepatocellular carcinoma (HCC) is the sixth most common 

type of cancer with a high mortality rate. Its early detection 
and diagnosis is important for an appropriate treatment plan 
and improved prognosis. Distinguishing malignant from be-
nign liver neoplasms by histopathological examination is often 
challenging. Quantitative assessment of histological features 
by computational image analysis has been found to enhance ob-
jectivity and accuracy of the diagnosis. We used computational 
image processing and statistics to analyze nuclear features of 
neoplastic cells and developed a decision tree algorithm which 
differentiated malignant and benign liver neoplasms with high 
sensitivity and specificity. We found this approach to be useful 
in histopathological diagnosis of HCC, especially in diagnosti-
cally challenging cases. Our algorithm provides reliable diag-
nosis on a limited tissue sample, as in biopsies, and requires 
only a single image. It also can support remote analysis reduc-
ing turnaround time for consultation from outreach areas.

Conclusions

Application of the decision tree algorithm developed by 
CHAID successfully classified the images of WD-HCC, HA 
and NNLT based on four quantified nuclear features (nuclear 
density, median nuclear sphericity, median nuclear perimeter 
and SD nuclear eccentricity). This pilot study demonstrates 
that this algorithm can reliably assist in differentiating WD-
HCC from both HA and NNLT. To the best of our knowledge, 
this is the first report that CHAID has been used to analyze 
morphologic features for histopathological interpretations, and 
larger studies are expected to bring it a step closer to clinical 
practice.
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